If it's not what You are looking for type in the equation solver your own equation and let us solve it.
93x^2-584x-3752=0
a = 93; b = -584; c = -3752;
Δ = b2-4ac
Δ = -5842-4·93·(-3752)
Δ = 1736800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1736800}=\sqrt{400*4342}=\sqrt{400}*\sqrt{4342}=20\sqrt{4342}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-584)-20\sqrt{4342}}{2*93}=\frac{584-20\sqrt{4342}}{186} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-584)+20\sqrt{4342}}{2*93}=\frac{584+20\sqrt{4342}}{186} $
| -3=b/2+1 | | 30-1w=0.5(w) | | 3x^2-5x-372=0 | | 6r=6r+7 | | V=(21-2x)(29.7-2x) | | 6x-4x-1=2 | | 4(3x+8)=20x+11-8x+21 | | 7-3(8t-10=35 | | -d/5-21=62 | | -2x+6=5x-15 | | 12x−2(4x−5)=26 | | 60-2w=0.4(w) | | 0.4(w)=60-20w | | 50x+2=6 | | 8(x-2)-4(3-6x)=-36 | | 60-2w=-0.4(w) | | 3x+10=-68,x+10 | | 69x+2491x-31=64(40x+40) | | 3x+10=-68 | | 6y7=y+17 | | 175m+25m+48500=50250-200m | | 25.12=(1/3)(12.56h) | | 150x=2350 | | 4x-14=-58,x-10 | | F(-5/2)=4x+7 | | 55+3+2=13x-3 | | 0.38=-0.000x^2+0.074x+0.007 | | -7(x-16)=-112 | | 14+n÷-8=22 | | 16/3=-4w | | 3+2=13x-3 | | 6(x-6)6=8x-6 |